Application Fields of 316L Stainless Steel Powder

Application Fields of 316L Stainless Steel Powder

316L stainless steel powder is an important metal powder, mainly used in various fields due to its excellent corrosion resistance and processing performance. The following will provide a detailed introduction to applying 316L stainless steel powder in different fields.

1. Aerospace field

In aerospace, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components. Due to the excellent high-temperature and oxidation resistance of 316L stainless steel powder, it can maintain stable performance in harsh environments such as high temperature, high pressure, and high speed, ensuring the safe and reliable operation of the aircraft. For example, in the manufacturing of jet engines, 316L stainless steel powder is used to manufacture high-temperature components such as turbine blades, combustion chambers, etc., which can withstand temperatures of up to 600 and high-pressure airflow.

In addition, 316L stainless steel powder is also widely used in manufacturing high-strength structural components in aerospace vehicles, such as beams, frames, ribs, etc. Due to its excellent processing and welding performance, it can be easily processed into various complex structural components, ensuring their dimensional accuracy and stability.

2. Petrochemical industry

In the petrochemical industry, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant equipment and pipelines. Due to 316L excellent corrosion resistance, it can effectively resist the erosion of various chemical substances and make sure the long-term stable operation of the equipment. For example, in petrochemical equipment manufacturing, 316L stainless steel powder is used to manufacture high-temperature and high-pressure containers and pipelines, which can withstand the corrosion of various chemicals and ensure its sealing and strength.

In addition, 316L stainless steel powder is also widely used in manufacturing catalyst carriers, filters, separators, and other components in the petrochemical production process. Due to 316L excellent corrosion resistance and high-temperature performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

3.Medical field

In the medical field, 316L stainless steel powder is widely used to manufacture high-standard implants and medical devices. Due to its non-toxic and harmless effects on the human body, as well as its good biocompatibility, it can ensure the long-term stability and safety of the product and is widely used in manufacturing human implants and medical devices. For example, in manufacturing artificial joints, prostheses, and other implants, 316L stainless steel powder is used to manufacture support structures and connectors, ensuring their strength and stability, as well as good wear and corrosion resistance.

In addition, 316L stainless steel powder is also widely used in the medical field to manufacture high-standard surgical instruments, medical devices, etc. Due to its good processing and welding performance, various complex-shaped medical devices can be manufactured, improving the reliability and safety of medical equipment.

4. Industrial sector

In the industrial field, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components and equipment. For example, it can be used to manufacture high-quality mechanical parts such as springs, bearings, bolts, chemical equipment, and ship components. Due to its excellent corrosion resistance and antioxidant performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

In addition, in the industrial field, 316L stainless steel powder is also widely used in the power and electronics industries. For example, in manufacturing batteries and electronic components, 316L stainless steel powder is used to manufacture components such as shells, brackets, and terminals, which can improve quality and safety of the products.

In summary, 316L stainless steel powder has many applications in different fields.

About KMPASS

KMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for 316L powder, please send an email to: sales2@nanotrun.com

Water-reducing agent solution for these three

The water-reducing agent should be used with concrete admixture, which will reflect the water reduction effect. Cement quality is therefore a direct factor of the effect of water-reducing agent.

Depending on the type of cement encountered, different strategies must be used.

High alkali cement

High-alkali is a cement type with a large amount of alkali. Alkali in high-alkali is usually higher than that of conventional cement.

The high-alkali cements have a high degree of alkalinity. This can impact the performance. High-alkali Cement can encourage the setting reaction, which is beneficial to the early development of strength in concrete. High-alkali Cement can also increase the fluidity of cement, making it more workable and easier to pump.

But there are also some issues with high-alkali clinkers. As an example, high alkali cements can reduce the efficiency of water-reducing agents and cause concrete to lose its slump faster. High-alkali cement may also lead to corrosion and carbonation problems in the concrete.

High-alkali Cement can benefit from water-reducing agents that contain a higher content of sodium sulfate. High-alkali cement contains a high amount of alkali, which accelerates C3A's dissolution. Sodium sulfate reacts with C3A, forming AFt crystalline structures and improving the fluidity of the cement mortar.

Low-alkali sulfur-deficient cement

Low alkali-sulfur cement is a cement with a lower sulfate level than normal cement. Ordinary cement is high in sulfate. It reacts with water and the sulfate forms crystals that cause cracks and expand the concrete.

Reduced sulfate cements reduce the alkali silica reaction (also called the reaction between the aggregate and the alkali) in concrete. The alkali silica reaction is a reaction between the cement and the aggregate that causes expansion and cracking. The use of low-alkali cements that are sulfur-deficient can help reduce this reaction, and increase the durability and life of the concrete.

Due to the lower sulfate contents, water reducers work less well with low alkali-sulfur cement. Water-reducing agents can cause concrete to lose slump quickly if they are used in excess. In this case, the conventional method of using water-reducing agents may not work. Instead, it is best to choose a water reducing agent that contains sulfate.

High C3A cement content

Cement with a high C3A-content is one that contains a large amount of C3A. C3A is a mineral found in cement which reacts with the water to produce an expansive substance when it hydrates. Cements with high C3A contents have a faster setting time and higher early strength. They are ideal for projects that need rapid setting.

Cement with a high C3A percentage can cause some problems. C3A and sulfate react to form sulphoaluminate. This can cause concrete to expand or crack. In humid environments, cements high in C3A are susceptible to producing corrosive calcium-sulfate precipitates, which can have a negative impact on the durability of concrete and steel structures.

Cement with high C3A will have a greater ability to bind water-reducing agents. This will result in a reduction of the fluidity of concrete and its slump. If you are using a water water-reducing Agent, choose a water-reducing Agent containing high Sulfate content or a retarder that has hydroxycarboxylate in order to reduce C3A adsorption and improve concrete fluidity.

There are two kinds of products that reduce water: one is the naphthalene product, and another is polycarboxylic acids. The main difference in water reduction is naphthalene. It is high-performance, while polycarboxylic is high-efficiency. For general foam concrete, naphthalene adds a few hundred to a kilo of cubic material, and polycarboxylic is only a few gram.

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. Introduction

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, geothermal and many other fields. Renewable energy is used as the raw material. The energy sector of tomorrow will be reliant on molybdenum because it is rare. This article will examine the characteristics, principles, and application areas for molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. Its chemical property is relatively stable, and it's insoluble in water. The molybdenum dioxide has excellent thermal and electrical stability. This makes it an important component of the new Energy Industry.


3. Molybdenum's role in the New Energy Industry

solar industry

The solar industry is the one that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers and other high-temperature devices to increase the thermal efficiency.

Wind Energy Industry


Wind energy is an industry that converts and uses wind power for energy conversion. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used for key components like blades and main shafts in wind turbines. This will improve the safety and service life of the equipment.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction loss of wind turbines and equipment failure rates.


Hydropower industry

Hydropower refers to an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Hydrogenerator unit (1): Molybdenum can be used for key components like blades and main shafts to improve service life and safety.


(2) Fluid accessories. Molybdenum compounds and their derivatives have excellent fluidity, corrosion resistance, and can be used in fluid accessories to improve fluid efficiency and durability for hydroelectric generation sets.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes and other geothermal equipment. This will improve thermal efficiency.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and improve quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in solar cells, and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind turbines. It is also a critical material for wind energy generation systems.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is one key material used in these systems.

Molybdenum has a major role to play in geothermal equipment. It is also a critical material for the systems that generate geothermal electricity.

Molybdenum has a vital role to play in the production of biofuels and in the combustion of biomass. It is also a crucial material for biomass energy systems.


5. Molybdenum in the new energy sector

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, molybdenum applications in the new industry will increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

Application Fields of Nickel Based Alloys

Nickel Based Alloys and Their Applications

Nickel-based alloy Based on nickel, it is made up of different alloying elements. It is used for its high-temperature properties, corrosion resistance and oxidation resistance. This article will give a detailed description of the Applications of nickel-based alloys in many fields including aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is an important application area of Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets, or satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and discs.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials that have excellent corrosion resistance and high temperature resistance. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are primarily used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

* The main equipment used in the petrochemical sector.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance and mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are primarily used to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

In the manufacture of gas turbines such as blades and key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial Joint

Artificial joints can be:

* Medical devices which replace diseased joints.

* Requiring materials that are highly corrosion resistant

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in the fields of aerospace, petrochemicals power energy and biomedicine. In the future, with the continued development of technology and the use of nickel-based materials, they will become more widely used, contributing to industrial and technological development.

KMPASS:

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in supplying super-high-quality chemicals and nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can contact us at sales2@nanotrun.com if you need Inconel powder.

What is the scope of application of boron nitride?

The US President recently said the conflict between Russia and Ukraine had driven up the prices of all the world's major food staples, including wheat, corn, barley, oilseeds and edible oils, and that Russia and Ukraine together supplied more than 25% of the world's wheat exports and about 20% of its barley exports. 

To address the food shortage, the Biden administration says it plans to increase the number of counties eligible for insurance for double cropping. Double cropping is when farmers grow two different crops a year on the same field. 

Under Biden's plan, the number of counties eligible for two-season crop insurance would increase by 681, for a total of 1,935. 

The UN has warned that up to 1.7bn people are "highly exposed" to the domino effect of the conflict between Russia and Ukraine on the global food, energy, and financial systems.  The agency says conflict could increase hunger in countries where people are already suffering from malnutrition.

Even countries where food is less scarce are being hit by rising prices. U.S. grocery prices rose 1% in April, compared with a 10.8% increase over the past 12 months, the Labor Department said recently.

According to the White House, global food prices have risen nearly 13 percent since the outbreak of the Russia-Ukraine conflict. 

Besides, affected by the ever-changing international situation, the supply and prices of international bulk Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride are still very uncertain.

Overview of boron nitride

Boron nitride industrial powder is a pure white ceramic material with a hexagonal crystal structure similar to graphite.Boron nitride can withstand temperatures exceeding 2,000°C,and depending on the grade,its dielectric strength is close to 1000 volts/mil.Boron nitride is hot-pressed in the form of billets,which can be easily processed into rods, bars,plates and even customized shapes.

{xunruicms_img_title}

Application of boron nitride

1.Release agent for metal forming and lubricant for metal drawing.

2.Special electrolysis and resistance materials in high temperature state.

3.High-temperature solid lubricants,extrusion anti-wear additives,additives for the production of ceramic composite materials,refractory materials and antioxidant additives,especially in the case of corrosion resistance of molten metals,heat-enhanced additives,high-temperature insulation materials.

4.Heat-sealing desiccant for transistors and additives for polymers such as plastic resins.

5.Pressed into various shapes of boron nitride products,which can be used as high temperature,high pressure,insulation and heat dissipation parts.

6.Thermal shielding materials in aerospace.

7.With the participation of catalysts,it can be converted into cubic boron nitride that is as hard as diamond after high temperature and high pressure treatment.

8.The structural materials of the atomic reactor.

9.Aircraft,rocket engine nozzle.

10.Insulator for high-voltage and high-frequency electricity and plasma arc.

11.Packaging materials to prevent neutron radiation.

12.The superhard material made by boron nitride processing can be made into high-speed cutting tools and drill bits for geological exploration and oil drilling.

13.Separation ring for continuous cast steel in metallurgy,flow slot for amorphous iron, release agent for continuous cast aluminum(various optical glass release agents)

14.Make all kinds of evaporation boats for capacitor film aluminum plating,picture tube aluminum plating,display aluminum plating, etc.

15.Various fresh-keeping aluminum-plated packaging bags,etc.

16.All kinds of laser anti-counterfeiting aluminum plating,brand hot stamping materials,all kinds of cigarette labels,beer labels,packaging boxes,cigarette packaging boxes,etc.

17.The filler used in cosmetics for lipstick is non-toxic,lubricating and shiny.

In terms of optical applications,due to the high hardness of the c-BN film and the high transmittance of the entire wavelength range from ultraviolet(from about 200 nm)to far infrared,it is suitable as a surface coating for some optical components, and is particularly suitable as Coating of window materials such as zinc selenide(ZnSe)and zinc sulfide(ZnS).In addition,it has good thermal shock resistance and hardness,and is expected to become an ideal window material for high-power lasers and detectors.

The price of boron nitride

The price of boron nitride will vary randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of boron nitride market. Tanki New Materials Co., Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for boron nitride, please feel free to send an inquiry to get the latest price of boron nitride.

Suppliers of Boron Nitride

As a global boron nitride supplier,Tanki New Materials Co.,Ltd has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials.The company has successfully developed a series of powder materials(titanium nitride,nitride Silicon,titanium nitride,etc.)high-purity targets,functional ceramics and structural devices, and provide OEM services.

Boron Nitride Properties
Other NamesBoron nitride
CAS No.10043-11-5
Compound FormulaBN
Molecular Weight24.82
AppearanceColorless crystals
Melting Point2973 °C
Boiling PointN/A
Density2.1 g/cm3
Solubility in H2Oinsoluble
Electrical Resistivity13 to 15 10x Ω-m
Poisson's Ratio0.1
Specific Heat840 to 1610 J/kg-K
Thermal Conductivity29 to 96 W/m-K
Thermal Expansion0.54 to 18 µm/m-K
Young's Modulus14-60 GPa
Exact Mass25.0124
Monoisotopic Mass25.0124
Boron Nitride Health & Safety Information
Signal WordWarning
Hazard StatementsH319-H335
Hazard CodesXi
Risk Codes36/37
Safety Statements26-36
RTECS NumberED7800000
Transport InformationN/A
WGK Germany3


Russia's Rokot-M carrier rocket is scheduled to launch for the first time in 2024. 

The first launch of the Rokot-M carrier rocket is planned for 2024 from the Plesetsk cosmodrome, the general manager of the Khrunichev National Space Research and Production Center told TASS. The Rokot-M, a lightweight carrier rocket powered by liquid fuel, began development in 2018, with The Russian side using domestic components instead of Ukrainian components.

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials including graphite powder, 3D printing powder, the Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Basic information of molybdenum disulfide

A recent poll in Britain found that public support for sanctions against Russia is falling as fuel and prices rise.  

The proportion of people willing to accept higher fuel prices as a result of western sanctions against Russia fell 14 percentage points to 36% from 50% in March, according to a survey conducted for the Telegraph by consultancy Redfield & Wilton Strategies.  

Global energy and fuel prices have soared since the start of the year and remain high because of the conflict between Russia and Ukraine and uncertainty over Russian supplies.  

The survey also found that 54% of people believe their own financial situation has worsened in the past year, up 12 percentage points from 42% two months ago. Sixty-two percent think things will get worse in the year ahead. Less than a third of respondents said they had received a pay rise to keep up with inflation, with two-thirds of those saying it was not enough to keep up with rising living costs.  

The figures suggest that public concern about the conflict with Ukraine is now likely to be overtaken by financial worries.  

Separately, the UK's consumer price index rose 7 percent this month from a year earlier, the highest since March 1992, according to figures released recently by the Office for National Statistics. In addition, a separate report released a few days ago by the Centre for Economics and Business Research said that real household disposable income in the UK will fall by 3% in 2022, equivalent to a loss of £2,320 per household, which would lead to the biggest drop in living standards since the 1950s. That is mainly because wages aren't keeping up with rising energy and fuel costs.  

The prices of other commodities like the Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price are also expected to be influenced.

Overview of molybdenum disulfide

Molybdenum disulfide is an inorganic substance, the chemical formula MoS2, is the main component of molybdenite. Black solid powder with metallic luster, molybdenum disulfide is an inorganic substance, chemical formula MoS2, is the main component of molybdenum ore. Black solid powder with metallic luster and smooth feel.

Basic information of molybdenum disulfide

English name: Molybdenum

Disulfide CAS No.: 1317-33-5

Molybdenum Disulfide Molecular formula: MoS2

Molybdenum disulfide molar mass: 160.06

Molybdenum disulfide Appearance: black/lead gray solid

Molybdenum disulfide density (water) = 1): 4.8

Molybdenum disulfide melting point (℃): 1185

Solubility of molybdenum disulfide: decomposed in aqua regia, hot sulfuric acid and nitric acid, insoluble in dilute acid and water

Molybdenum Disulfide Hazardous Properties: The powder will burn at high temperatures and react violently with peroxides.

{xunruicms_img_title}

How is molybdenum disulfide MoS2 powder produced?

MoS2 occurs naturally in molybdenite (a crystalline mineral) or pyroxene (a rare low-temperature form of molybdenite). Molybdenite obtains relatively pure MoS2 by flotation. The main pollutant is carbon. MoS2 can also be produced by thermal treatment of almost all molybdenum compounds with hydrogen sulfide or elemental sulfur, and by metathesis of molybdenum pentachloride.

Application of molybdenum disulfide

Molybdenum disulfide is an important solid lubricant, especially suitable for high temperature and high pressure. It is also diamagnetic and can be used as linear photoconductors and semiconductors showing P-type or N-type conductivity, with rectification and energy conversion. Molybdenum disulfide can also be used as a catalyst for complex hydrocarbon dehydrogenation.

It is also known as the "King of Advanced Solid Lubricants". Molybdenum disulfide is a solid powder made of natural molybdenum concentrate after chemical purification and changing the molecular structure. This product is black, slightly silver-gray, with metallic luster, smooth to the touch, and insoluble in water. This product has the advantages of good dispersibility. Not sticky. It can be added to various greases to form a non-stick colloidal state, which can increase the lubricity and extreme pressure of the grease. It is also suitable for high temperature, high pressure, high speed and the main function of molybdenum disulfide used in friction materials is to reduce friction at low temperature, increase friction at high temperature, and small loss on ignition. Volatile in friction materials.

Friction reduction: The particle size of molybdenum disulfide processed by supersonic jet pulverization is 325-2500 mesh, the particle hardness is 1-1.5, and the friction coefficient is 0.05-0.1, which can reduce friction when used as friction material;

Increase friction: Molybdenum disulfide is non-conductive, and there are copolymers of molybdenum disulfide, molybdenum trisulfide and molybdenum trioxide. When the temperature of the friction material increases sharply due to friction, the molybdenum trioxide particles in the copolymer expand with the increase of temperature and increase the friction force;

Antioxidant: Molybdenum disulfide is obtained through chemical purification and comprehensive reaction. Its pH value is 7-8, and it is slightly alkaline. It covers the surface of the friction material, protects other materials, prevents them from being oxidized, especially makes other materials not easy to fall off and enhances adhesion.

Molybdenum disulfide price

The price of molybdenum disulfide varies randomly with factors such as production costs, transportation costs, international conditions, exchange rates, and supply and demand in the molybdenum disulfide market. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for molybdenum disulfide material, please feel free to contact for the latest price of molybdenum disulfide.

Molybdenum disulfide suppliers

As a global molybdenum disulfide supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (zinc sulfide, tungsten sulfide, bismuth sulfide, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Parameters of molybdenum disulfide MoS2 powder:
MoS2MoO3InsolublesFeSiO2H2OOilAcid Value
99%0.05%0.26%0.14%0.05%0.08%0.10%0.54


Russia's Rokot-M carrier rocket is scheduled to launch for the first time in 2024. 

The first launch of the Rokot-M carrier rocket is planned for 2024 from the Plesetsk cosmodrome, the general manager of the Khrunichev National Space Research and Production Center told TASS. The Rokot-M, a lightweight carrier rocket powered by liquid fuel, began development in 2018, with The Russian side using domestic components instead of Ukrainian components.

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials including graphite powder, 3D printing powder, the Molybdenum Disulfide, Molybdenum Disulfide Overview, Molybdenum Disulfide Application, Molybdenum Disulfide Suppliers, Molybdenum Disulfide Price, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Product Properties of Chromium Oxide Cr2O3 Powder CAS 1308-38-9

Overview of Chromium Oxide Cr2O3 Powder

Chromium oxide is an inorganic substance. The chemical formula of chromium oxide is Cr2O3. It is a light green to dark green fine hexagonal crystal. It turns brown when it's hot and green when it's cold.

{xunruicms_img_title}

Cr2O3 is found in the chromium-rich tremolite skarn, postquartz, and chlorite veins in the form of the natural mineral escolite. Eskolaite is also a rare component of chondrites.

 Product Properties of Chromium Oxide Cr2O3 Powder

Cr2O3 has a corundum structure consisting of hexagonally arranged oxide anions, in which 2/3 of the octahedral pores are occupied by chromium. Similar to corundum, Cr2O3 is a hard and brittle material (Mohs hardness 8-8.5).

Chromium oxide dissolves in hot alkali metal bromate solution. Soluble in heated potassium bromate solution, slightly soluble in acid and alkali, almost insoluble in water, ethanol, acetone, acid and alkali. and annoying. It is extremely stable to light, atmosphere, high temperature and corrosive gases such as sulfur dioxide and hydrogen sulfide. It has high coverage.

 Application of Chromium Oxide Cr2O3 Powder

1. Lead chrome green is the main coloring pigment in the paint industry, and most green paints are formulated with this pigment. In addition, it is used in paints and plastics. Its application range is very similar to that of lead chrome yellow. Due to the presence of chrome yellow in the ingredients, attention should be paid to the toxicity of lead in its application. Lead chrome green contains iron blue and oxidant lead chromate, so when the dust encounters sparks, there is a possibility of spontaneous combustion, so be careful when drying and crushing. After burning, lead chrome green completely loses the characteristics of green pigment and turns into a dark brown-yellow substance. In addition, in the production of nitro paint, the rolling process is not directly rolled with lead chrome green,

2. Used in metallurgy, ceramics, chromium oxide refractories, pigment industrial raw materials and organic synthesis catalysts.

3. Used as analytical reagent and catalyst.

4. It is used as a coloring, wear-resistant and corrosion-resistant filler for adhesives and sealants. It can also be used as a colorant for enamel, ceramics, artificial leather and building materials, a catalyst for organic chemical synthesis, a lightfast coating and a special ink for printing money.

5. It is used as a colorant for cosmetics, mainly for eye cosmetics, but not for oral and lip cosmetics, and is not recommended for facial cosmetics and nail polish.

6. Chromium oxide is one of the main components of silver-plating bright liquid. The newly prepared chromium trioxide is an important raw material for the preparation of chromium fluoride and chromium bromide.

Chromium Oxide Cr2O3 Powder Price

The price of chromium oxide Cr2O3 powder will vary randomly with the production cost of chromium oxide Cr2O3 powder, transportation cost, international situation, exchange rate, market supply and demand and other factors. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, inexpensive nanomaterials and chemicals by providing turnkey custom manufacturing services. If you are looking for Chromium Oxide Cr2O3 Powder, please feel free to check the latest price of Chromium Oxide Cr2O3 Powder.

Chromium oxide Cr2O3 powder supplier

As a global supplier of Chromium Oxide Cr2O3 Powders, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and can provide OEM services.

Technical Parameter of Cr2O3 Powder CAS 1308-38-9 Chrome Oxide Green 

Product NameChrome Oxide GreenEINECS No.215-160-9CAS No.1308-38-9
Molecular FormulaCr2O3AppearanceBright green to dark green
StandardSR-GSR-DSR-M
Cr2O3>99%>99%>99%
Fe2O3≤0.2%≤0.2%≤0.2%
SiO2≤0.2%≤0.2%≤0.2%
Moisture≤0.2%≤0.2%≤0.2%
Water soluble≤0.3%≤0.3%≤0.3%
Sieve residue(45um)≤0.5%≤0.5%≤0.2%
D50 (um)1.2-22-80.5-1
Bulk density (g/cm3)0.6-0.81.2-1.50.4-0.65
Hexavalent chromiumMinimum up to 0-5ppm, or customize as requirement
Cr2O3 Powder CAS 1308-38-9 Chrome Oxide Green Properties
Other Nameschromium oxide, chrome oxide, green chrome oxide
CAS No.1308-38-9
Compound FormulaCr2O3
Molecular Weight151.99
AppearanceGreen Powder
Melting Point2266
Boiling Point4000
Density5.21 g/cm3
Solubility in H2ONo
Thermal ExpansionN/A
Cr2O3 Powder Chrome Oxide Green Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


Magnesium oxide product types

The US Commerce Secretary has announced that the US will temporarily lift tariffs imposed on Ukraine during the Trump administration to help Ukraine recover its economy and continue to show support for the Russia-Ukraine situation. "For steel mills to remain an economic lifeline for the Ukrainian people, they must be able to export steel," the Commerce Department said in a statement.

The Biden administration will announce the lifting of steel tariffs on Ukraine for one year.  Ukraine is a fairly small supplier of U.S. steel, shipping about 218,000 tons in 2019, ranking it 12th among foreign suppliers to the United States, the report said. The U.S. Commerce Department noted that the steel industry is uniquely important to Ukraine's economic strength, with one in 13 people employed in the steel industry. 

Affected by the ever-changing international situation, the supply and prices of international bulk Magnesium Oxide, MgO Overview, Magnesium Oxide Application, MgO Suppliers, Magnesium Oxide Price are still very uncertain.

Magnesium oxide MgO overview

Magnesium oxide MgO is an alkaline oxide with the same properties as alkaline oxides. It is a gelling material, white or off-white powder, odorless, tasteless and non-toxic. It is a typical alkaline earth metal Oxide, with chemical formula MgO. Melting point 2852°C, boiling point 3600°C, density 3.58g/cm3 (25°C). Soluble in acid and ammonium salt solution, insoluble in alcohol. The solubility in water is 0.00062 g/100 mL (0 °C) and 0.0086 g/100 mL (30 °C). When exposed to the air, it is easy to absorb water and carbon dioxide and gradually become basic magnesium carbonate. Lightweight products are faster than heavier ones. It combines with water to generate magnesium hydroxide under certain conditions, which is slightly alkaline reaction. The pH of the saturated aqueous solution was 10.3. Soluble in acid and ammonium salt, insoluble in water, the solution is alkaline. Insoluble in ethanol. It has a strong refraction effect in the visible and near-ultraviolet light range. Magnesite (MgCO3), magnesium oxide. The seawater is treated with slaked lime to obtain magnesium hydroxide precipitation, and the magnesium hydroxide is burned to obtain magnesium oxide. It is also possible to use the magnesium chloride halide obtained from the comprehensive utilization of seawater or the brine after the bromine extraction as the raw material, and add sodium hydroxide or sodium carbonate. Magnesium hydroxide or basic magnesium carbonate is produced to precipitate and then burn to obtain magnesium oxide. my country mainly uses magnesite, dolomite, brine or brine as raw materials.

{xunruicms_img_title}

Magnesium oxide product types

Classification: divided into light magnesium oxide and heavy magnesium oxide. Lightweight and loose in volume, it is a white amorphous powder. Odorless, tasteless and non-toxic.

Industrial grade light burn

Application: Mainly used in the production of magnesite products. Light-burned magnesium oxide and magnesium chloride aqueous solution in a certain proportion can be gelatinized and hardened into a hardened body with certain physical and mechanical properties, which is called magnesite cement.

Advanced Lubricant Grade

Applications: Mainly used as cleaning agent, vanadium inhibitor and desulfurizer in advanced lubricating oil processing, greatly improving the density and rheology of lubricating film and reducing ash content. The removal of lead and mercury can reduce the pollution of lubricating oil or fuel waste to the environment. Surface-treated magnesium oxide can also be used as a complexing agent, chelating agent and carrier in the refining process, which is more conducive to product fractionation to improve product quality.

food grade

Application fields: used as food additives, color stabilizers, pH adjusters, as supplements of magnesium in health products and food.

medical grade

Application field: In the field of biopharmaceuticals, medical grade magnesium oxide can be used as antacid, adsorbent, desulfurizer, lead remover, complex filter aid, PH adjuster. In medicine, it can be used as antacid and laxative to inhibit and relieve Hyperacidity, treatment of gastric and duodenal ulcers. The neutralizing effect of gastric acid is strong, slow and long-lasting, and does not produce carbon dioxide.

Silicon steel grade

Application field: silicon steel grade magnesia has good magnetic permeability (that is, has a large positive magnetic susceptibility) and excellent insulating properties.

Advanced Electromagnetic Grade

Application fields: used for wireless high-frequency paramagnetic permeability materials, magnetic rod antennas, magnetic cores of frequency modulation components, etc. instead of ferrite. It can be used in the production of composite superconducting magnetic materials and also in the electronic magnetic industry. As "soft magnetic material". It is also an ideal raw material for industrial enamels and ceramics.

High Purity Magnesium Oxide

Application field: High-purity magnesium oxide has excellent alkali resistance and electrical insulation at high temperature. High coefficient of thermal expansion and thermal conductivity with good light transmittance. Widely used as high temperature heat resistant material. In the field of ceramics, it is used as a raw material for light-transmitting ceramic crucibles and substrates.

nanoscale

Application field: Nano-scale magnesium oxide has obvious small size effect, surface effect, quantum size effect and macroscopic tunnel effect. After modification, there is no agglomeration phenomenon, and it has many special functions in optics, catalysis, magnetism, mechanics, chemical industry, etc. And important application value, the prospect is very broad, is an important new material in the 21st century.

Application of Magnesium Oxide MgO

Magnesium oxide MgO is used to determine sulfur and pyrite in coal and sulfur and arsenic in steel. Used as a standard for white pigments. Light magnesia is mainly used as a raw material for the preparation of ceramics, enamels, refractory crucibles and refractory bricks. Also used as an activator for polishes, adhesives, coatings, paper fillers, accelerators neoprene and fluororubber. After mixing with solutions such as magnesium chloride, it can be made into an aqueous solution of magnesium oxide. It is medicinally used as an antacid and laxative for hyperacidity and duodenal ulcers. Used as a catalyst in the chemical industry and as a raw material for the manufacture of magnesium salts. Magnesium oxide MgO is also used in the manufacture of glass, dyeing powder, phenolic plastics, etc. Heavy magnesia is used in the rice milling industry for firing, grinding and semi-rolling. It is used in the construction industry to manufacture artificial chemical floors, artificial marble thermal insulation boards and sound insulation boards, and used as fillers in the plastics industry. It can also be used to produce other magnesium salts.

One of the main uses of magnesium oxide is as a flame retardant. Traditional flame retardant materials are widely used in flame retardant mixtures consisting of halogenated polymers or halogenated flame retardants. However, once a fire occurs, due to thermal decomposition and combustion, a large amount of smoke and toxic corrosive gases will be generated, which will hinder fire fighting and personnel evacuation, and corrode equipment and equipment. In particular, it has been found that more than 80% of fatalities in fires are caused by dense smoke and toxic gases from materials. Therefore, in addition to flame retardant efficiency, low smoke and low toxicity are also indispensable indicators of flame retardants. The development of my country's flame retardant industry is extremely unbalanced, and chlorinated flame retardants account for a large proportion, ranking first among flame retardants, among which chlorinated paraffin occupies a monopoly position. However, chlorine-based flame retardants will release toxic gases when they act, which is far from the non-toxic and efficient pursuit of modern life. Therefore, in order to comply with the development trend of low-smoke, low-toxicity, and pollution-free flame retardants in the world, it is essential to develop, produce and apply magnesium oxide flame retardants.

Magnesium oxide MgO price

The price of magnesium oxide MgO will change randomly according to factors such as magnesium oxide production cost, transportation cost, international situation, and magnesium oxide market supply and demand. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost products, nanomaterials and chemicals by providing a full range of customized services. If you are looking for Magnesium Oxide MgO, please feel free to send an inquiry to get the latest price of Magnesium Oxide MgO.

Suppliers of Magnesium Oxide MgO

As a global magnesia MgO supplier, Tanki New Materials Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (titanium oxide, silicon oxide, titanium oxide, etc.), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

More information about Magnesium oxide MgO powder
Magnesium Oxide MgO Properties (Theoretical)
Compound FormulaMgO
Molecular Weight40.3
AppearanceWhite Powder
Melting Point2,852° C (5,166° F)
Boiling Point3,600° C (6,512° F)
Density3.58 g/cm3
Solubility in H2ON/A
Exact Mass39.98
Monoisotopic Mass39.98
Magnesium Oxide MgO Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Precautionary StatementsN/A
Flash PointNot applicable
Risk CodesN/A
Safety StatementsN/A
RTECS NumberOM3850000
Transport InformationNONH
WGK Germany1


The current international situation is highly uncertain, and its economic impact has not been able to be assessed properly. In addition, rising energy and commodity prices and supply chain disruptions are expected to push the price of the Magnesium Oxide, MgO Overview, Magnesium Oxide Application, MgO Suppliers, Magnesium Oxide Price higher.

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is a carbon compound with excellent properties, mainly composed of boron and carbon elements, with the chemical formula B4C. The article will give a detailed description of the physical properties and chemical composition, as well as preparation methods, performance characterisation, and applications fields, allowing for further research in other fields.

Physical properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a dense black crystal structure, a cubic lattice and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical Properties

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it a good choice for long-term usage in corrosive and high-temperature environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, arc melting and chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid or borax to create boron carbide. The reaction formula is B2O3+3C = B4C. The reaction temperature ranges between 1800 and 2000°C. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. The reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term mainly refers to physical, chemical, or mechanical properties.

Physical property

Density, conductivity, and thermal conductivity are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high temperature and corrosive environment.

Mechanical property

Boron carbide's high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to increase the efficiency of different industries, create value and overcome various challenges. Send an email to Sales1@rboschco.com, if you're looking for Boron Carbide.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum sulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. The layers of the crystal structure are made up of alternate arrangements of sulfur and Molybdenum. Molybdenum disulfide This material is good in terms of chemical and thermo-stability. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composites. As a great lubricant molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. This is why it's widely used by the machinery, petrochemicals and automobile industries. In extreme environments such as high temperature, high loads, or high speeds, the molybdenum diulfide plays a lubricating function, reducing friction and wearing, and extending the service life. In addition to being used as a fuel additive, molybdenum diulfide also improves the combustion efficiency, reducing pollutant emission. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in various areas. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, low friction coefficient, and good resistance to friction. It has a high lubrication capacity in high-temperature, high-load and high-speed environments. This is why it's widely used in the machinery industry, automobile manufacturing, and petrochemical industries. Molybdenum Disulfide Lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used as a fuel additive, can increase the efficiency of combustion and reduce emissions. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum Disulfide can also be mixed with rubber, resins and other materials in order to produce high-performance materials such as reinforced fibres or composite plastics. These composites offer excellent mechanical properties, corrosion resistance, and are widely used for automotive and aerospace.

Electronic industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic components. These electronic components have excellent semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, including double decompositions, synthesises, flotation or electroplating. Synthesis is the most commonly used method for producing molybdenum.

This method can be used to create nano MoS2 through the reaction of a molybdenum, tungsten source and a sulfur source. This method can produce sulfides of high purity with fewer impurities. This method can prepare sulfides to meet various functional requirements. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

It is essential to prepare both a tungsten source or molybdenum, and a sulfur-based source during the preparation stage of raw materials. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfide. The purity, chemical properties, reaction conditions and other factors must be taken into consideration when selecting tungsten and molybdenum or sulfur sources.

The chemical reaction of tungsten or Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. The reaction temperature, the reaction time, and the reaction atmosphere are all part of the specific conditions. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

In the stage of product separation and purity, molybdenum isulfide has to be separated from reaction products with the help of appropriate separation and cleansing methods. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The reaction between ammonium motdate or tungate and ammonium oxide produces molybdenum. The method is able to produce molybdenum sulfide even at a low temperature. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

The method of flotation involves the use of organic agents to grind tungsten, molybdenum or other sources into a mixture with minerals like pyrite or Sphalerite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complicated production process.

Electroplating is the process of electroplating molybdenum on a metallic substrate. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

Different production methods offer different advantages and drawbacks. You should choose the best method for your needs. It is also important to consider environmental protection and safety during the production process.

Prospect Market of Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in machinery, industry, electronics, aviation, and other fields. Demand for molybdenum diulfide has increased due to the continued development of global economies and rapid developments in high-tech fields. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performing lubricant used in a variety of fields, including machinery manufacturing and automobile manufacturing. As industrialization continues and mechanical equipment becomes more precise and automated, lubricants requirements are increasing. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollution, reduce air pollutants and increase energy efficiency. As environmental protection policies are strengthened and environmental awareness is continually raised, molybdenum dioxide will become a more popular environmentally-friendly fuel additive.

As well, molybdenum disulfide, resins and rubber can also be used to produce high-performance materials such as reinforced fibres or composite plastics. These composites have excellent mechanical and corrosion-resistant properties and are used in many fields, including automotive, aerospace, electronic and others. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see its demand increase.

The molybdenum-disulfide compound can be used to create new energy sources, including solar cells, energy storage batteries, and other energy technologies. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

As the cost of production is reduced and the production process improved, the price will also gradually decrease, which will encourage further market growth. In parallel, as environmental awareness increases and technological progress continues, new production technologies and processes will be introduced to molybdenum-disulfide. This will further promote the growth of the market.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been a leading global chemical supplier & manufacturer for over 12 years.

Chemicals and nanomaterials of high quality, including graphite powders, zinc sulfide particles, boron oxide, and silicon powder.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. Problem of cement proportions: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement ratio. This will cause the concrete to harden too quickly, and lead to cracking.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation rates of the concrete are accelerated. This results in cracking on the concrete's surface. Concrete constructions are most likely to crack in the winter or summer because of temperature variations.

Add an anticracking agent. A composite anticracking agent made of inorganic materials can stop more than 80% cracking. Add 2 to 3 kilograms per cubic foot.

Newsarchitectureboitte is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsarchitectureboitte.